Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect.
نویسندگان
چکیده
Several problems limit the application of gene transfer to correct the cystic fibrosis (CF) Cl(-) transport defect in airway epithelia. These include inefficient transduction with vectors applied to the apical surface, a low rate of division by airway epithelial cells, failure of transgene expression to persist, and immune responses to vectors or vector-encoded proteins. To address these issues, we used a feline immunodeficiency virus-based (FIV-based) vector. FIV vector formulated with a calcium chelator transduced fully differentiated, nondividing human airway epithelia when applied to the apical surface. FIV-based vector encoding the cystic fibrosis transmembrane conductance regulator cDNA corrected the Cl(-) transport defect in differentiated CF airway epithelia for the life of the culture (>3 months). When this approach was applied in vivo, FIV vector expressing beta-galactosidase transduced 1-14% of adult rabbit airway epithelia. Transduced cells were present in the conducting airways, bronchioles, and alveoli. Importantly, gene expression persisted, and cells with progenitor capacity were targeted. FIV-based lentiviral vectors may be useful for the treatment of genetic lung diseases such as CF. This article may have been published online in advance of the print edition.
منابع مشابه
Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha.
The practical application of gene therapy as a treatment for cystic fibrosis is limited by poor gene transfer efficiency with vectors applied to the apical surface of airway epithelia. Recently, folate receptor alpha (FR alpha), a glycosylphosphatidylinositol-linked surface protein, was reported to be a cellular receptor for the filoviruses. We found that polarized human airway epithelia expres...
متن کاملLentiviral Vector Gene Transfer to Porcine Airways
In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig...
متن کاملA shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia.
Adeno-associated viruses (AAVs) such as AAV5 that transduce airway epithelia from the apical surface are attractive vectors for gene transfer in cystic fibrosis (CF). However, their utility in CF has been limited because packaging of the insert becomes inefficient when its length exceeds approximately 4,900-5,000 bp. To partially circumvent this size constraint, we previously developed a CF tra...
متن کاملThixotropic solutions enhance viral-mediated gene transfer to airway epithelia.
Adenovirus-mediated gene transfer to airway epithelia is inefficient in part because its receptor is absent on the apical surface of the airways. Targeting adenovirus to other receptors, increasing the viral concentration, and even prolonging the incubation time with adenovirus vectors can partially overcome the lack of receptors and facilitate gene transfer. Unfortunately, mucociliary clearanc...
متن کاملLentiviral Vectors and Cystic Fibrosis Gene Therapy
Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentivir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 104 11 شماره
صفحات -
تاریخ انتشار 1999